Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2306653, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38534177

RESUMEN

Increasing densities of reaction sites for gaseous reactants in solid oxide electrochemical reactors (SOERs), is a key strategy for achieving enhanced performance in either fuel cell or electrolysis modes. Fabrication of 3D structured components in SOERs can enhance those densities of reaction sites, which is achieved by 3D inkjet printing with high reproducibility, having developed inks with appropriate properties. First, the effects of pillar geometries on SOER performances are predicted through numerical simulations, enabling subsequent 3D printing to focus on the more effective geometries. Herein, the study reports the results of experimental validation of those predictions by evaluating the electrochemical performances of cells with various heights of 3D inkjet-printed Ni(O)- yttria stabilized zirconia (YSZ) pillars and YSZ pillars. Those measurements prove that increasing pillar heights generally increases SOER peak power densities in fuel cell mode and increased current densities at the thermoneutral potential (1.285 V) in steam electrolysis mode, as predicted by simulations. With increasing pillar heights, more limitations in performance enhancement are found with YSZ electrolyte pillars than with Ni-YSZ pillars, again as predicted by simulations. The subsequent microstructural analysis of Ni-YSZ pillars proves the suitability of the Ni(O)-YSZ composite particle ink formulation and the reliability of 3D printing.

2.
J Phys Chem C Nanomater Interfaces ; 127(41): 20325-20336, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37876977

RESUMEN

A fundamental understanding of the electrochemical reactions and surface chemistry at the solid-gas interface in situ and operando is critical for electrode materials applied in electrochemical and catalytic applications. Here, the surface reactions and surface composition of a model of mixed ionic and electronic conducting (MIEC) perovskite oxide, (La0.8Sr0.2)0.95Cr0.5Fe0.5O3-δ (LSCrF8255), were investigated in situ using synchrotron-based near-ambient pressure (AP) X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure spectroscopy (NEXAFS). The measurements were conducted with a surface temperature of 500 °C under 1 mbar of dry oxygen and water vapor, to reflect the implementation of the materials for oxygen reduction/evolution and H2O electrolysis in the applications such as solid oxide fuel cell (SOFC) and electrolyzers. Our direct experimental results demonstrate that, rather than the transition metal (TM) cations, the surface lattice oxygen is the significant redox active species under both dry oxygen and water vapor environments. It was proven that the electron holes formed in dry oxygen have a strong oxygen character. Meanwhile, a relatively higher concentration of surface oxygen vacancies was observed on the sample measured in water vapor. We further showed that in water vapor, the adsorption and dissociation of H2O onto the perovskite surface were through forming hydroxyl groups. In addition, the concentration of Sr surface species was found to increase over time in dry oxygen due to Sr surface segregation, with the presence of oxygen holes on the surface serving as an additional driving force. Comparatively, less Sr contents were observed on the sample in water vapor, which could be due to the volatility of Sr(OH)2. A secondary phase was also observed, which exhibited an enrichment in B-site cations, particularly in Fe and relatively in Cr, and a deficiency in A-site cation, notably in La and relatively in Sr. The findings and methodology of this study allow for the quantification of surface defect chemistry and surface composition evolution, providing crucial understanding and design guidelines in the electrocatalytic activity and durability of electrodes for efficient conversions of energy and fuels.

3.
J Chem Phys ; 158(24)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37352420

RESUMEN

Understanding the charge transfer processes at solid oxide fuel cell (SOFC) electrodes is critical to designing more efficient and robust materials. Activation losses at SOFC electrodes have been widely attributed to the ambipolar migration of charges at the mixed ionic-electronic conductor-gas interface. Empirical Butler-Volmer kinetics based on the transition state theory is often used to model the current-voltage relationship, where charged particles transfer classically over an energy barrier. However, the hydrogen oxidation/water electrolysis reaction H2(g) + O2- ⇌ H2O(g) + 2e- must be modeled through concerted electron and proton tunneling events, where we unify the theory of the electrostatic surface potential with proton-coupled electron transfer kinetics. We derive a framework for the reaction rate that depends on the electrostatic surface potential, adsorbate dipole moment, the electronic structure of the electron donor/acceptor, and vibronic states of the hydrogen species. This theory was used to study the current-voltage characteristics of the Ni/gadolinium-doped ceria electrode in H2/H2O(g), where we find excellent validation of this novel model. These results yield the first reported quantification of the solvent reorganization energy for an SOFC material and suggest that the three-phase boundary mechanism is the dominant pathway for charge transfer at cermet electrodes.


Asunto(s)
Óxidos , Protones , Óxidos/química , Electrones , Hidrógeno/química , Electrodos
4.
RSC Adv ; 13(20): 13786-13797, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37152577

RESUMEN

A series of higher-order Ruddlesden-Popper phase materials - La3PrNi3O10-δ , La2Pr2Ni3O10-δ and LaPr3Ni3O10-δ - were synthesised and investigated by neutron powder diffraction to understand the oxygen defect structure and propose possible pathways for oxygen transport in these materials. Further complimentary DFT calculations of the materials were performed to support the experimental analysis. All of the phases were hypostoichiometric and it was observed that the majority of the oxygen vacancies were confined to the perovskite layers, with a preference for equatorial oxygen sites. A particular preference for vacancies in O(1) and O(5) sites at high temperatures was observed from neutron diffraction measurements which were further complimented by DFT calculations wherein the vacancy formation energy was found to be lowest at the O(1) site. Also, a preference for a curved oxygen transport pathway around the NiO6 octahedra was observed which agrees with the published literature for Ruddlesden-Popper phase materials. Lattice parameters for all three compositions showed a linear increase with increasing temperature, but the increase was greatest in the c parameter while the b parameter showed only a slight increase when compared to the a parameter. The thermal expansion coefficient was calculated for all compositions and was found to be in the range 13.0-13.4 × 10-6 °C-1, which is compatible with the commonly used electrolyte materials for solid oxide fuel cells.

5.
Chem Mater ; 35(3): 863-869, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36818589

RESUMEN

Understanding the interfacial dynamics of batteries is crucial to control degradation and increase electrochemical performance and cycling life. If the chemical potential of a negative electrode material lies outside of the stability window of an electrolyte (either solid or liquid), a decomposition layer (interphase) will form at the interface. To better understand and control degradation at interfaces in batteries, theoretical models describing the rate of formation of these interphases are required. This study focuses on the growth kinetics of the interphase forming between solid electrolytes and metallic negative electrodes in solid-state batteries. More specifically, we demonstrate that the rate of interphase formation and metal plating during charge can be accurately described by adapting the theory of coupled ion-electron transfer (CIET). The model is validated by fitting experimental data presented in the first part of this study. The data was collected operando as a Na metal layer was plated on top of a NaSICON solid electrolyte (Na3.4Zr2Si2.4P0.6O12 or NZSP) inside an XPS chamber. This study highlights the depth of information which can be extracted from this single operando experiment and is widely applicable to other solid-state electrolyte systems.

6.
Chem Mater ; 35(3): 853-862, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36818592

RESUMEN

To harness all of the benefits of solid-state battery (SSB) architectures in terms of energy density, their negative electrode should be an alkali metal. However, the high chemical potential of alkali metals makes them prone to reduce most solid electrolytes (SE), resulting in a decomposition layer called an interphase at the metal|SE interface. Quantitative information about the interphase chemical composition and rate of formation is challenging to obtain because the reaction occurs at a buried interface. In this study, a thin layer of Na metal (Na0) is plated on the surface of an SE of the NaSICON family (Na3.4Zr2Si2.4P0.6O12 or NZSP) inside a commercial X-ray photoelectron spectroscopy (XPS) system while continuously analyzing the composition of the interphase operando. We identify the existence of a solid electrolyte interphase at the Na0|NZSP interface, and more importantly, we demonstrate for the first time that this protocol can be used to study the kinetics of interphase formation. A second important outcome of this article is that the surface chemistry of NZSP samples can be tuned to improve their stability against Na0. It is demonstrated by XPS and time-resolved electrochemical impedance spectroscopy (EIS) that a native Na x PO y layer present on the surface of as-sintered NZSP samples protects their surface against decomposition.

7.
Nano Lett ; 22(18): 7515-7521, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36067488

RESUMEN

Activation losses at solid oxide fuel cell (SOFC) electrodes have been widely attributed to charge transfer at the electrode surface. The electrostatic nature of electrode-gas interactions allows us to study these phenomena by simulating an electric field across the electrode-gas interface, where we are able to describe the activation overpotential using density functional theory (DFT). The electrostatic responses to the electric field are used to approximate the behavior of an electrode under electrical bias and have found a correlation with experimental data for three different reduction reactions at mixed ionic-electronic conducting (MIEC) electrode surfaces (H2O and CO2 on CeO2; O2 on LaFeO3). In this work, we demonstrate the importance of decoupled ion-electron transfer and charged adsorbates on the performance of electrodes under nonequilibrium conditions. Finally, our findings on MIEC-gas interactions have potential implications in the fields of energy storage and catalysis.

8.
Nat Commun ; 13(1): 5109, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042227

RESUMEN

Chemical looping processes based on multiple-step reduction and oxidation of metal oxides hold great promise for a variety of energy applications, such as CO2 capture and conversion, gas separation, energy storage, and redox catalytic processes. Copper-based mixed oxides are one of the most promising candidate materials with a high oxygen storage capacity. However, the structural deterioration and sintering at high temperatures is one key scientific challenge. Herein, we report a precursor engineering approach to prepare durable copper-based redox sorbents for use in thermochemical looping processes for combustion and gas purification. Calcination of the CuMgAl hydrotalcite precursors formed mixed metal oxides consisting of CuO nanoparticles dispersed in the Mg-Al oxide support which inhibited the formation of copper aluminates during redox cycling. The copper-based redox sorbents demonstrated enhanced reaction rates, stable O2 storage capacity over 500 redox cycles at 900 °C, and efficient gas purification over a broad temperature range. We expect that our materials design strategy has broad implications on synthesis and engineering of mixed metal oxides for a range of thermochemical processes and redox catalytic applications.

9.
Small ; 18(43): e2107020, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35182013

RESUMEN

Exsolution of stable metallic nanoparticles for use as efficient electrocatalysts has been of increasing interest for a range of energy technologies. Typically, exsolved nanoparticles show higher thermal and coarsening stability compared to conventionally deposited catalysts. Here, A-site deficient double perovskite oxides, La2- x NiRuO6- δ (x = 0.1 and 0.15), are designed and subjected to low-temperature reduction leading to exsolution. The reduced double perovskite materials are shown to exsolve nanoparticles of 2-6 nm diameter during the reduction in the low-temperature range of 350-450 °C. The nanoparticle sizes are found to increase after reduction at the higher temperature (450 °C), suggesting diffusion-limited particle growth. Interestingly, both nickel and ruthenium are co-exsolved during the reduction process. The formation of bimetallic nanoparticles at such low temperatures is rare. From the in situ impedance spectroscopy measurements of the double perovskite electrode layers, the onset of the exsolution process is found to be within the first few minutes of the reduction reaction. In addition, the area-specific resistance of the electrode layers is found to decrease by 90% from 291 to 29 Ω cm2 , suggesting encouraging prospects for these low-temperature rapidly exsolved Ni/Ru alloy nanoparticles in a range of catalytic applications.

10.
Phys Chem Chem Phys ; 23(27): 14569-14579, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-33988196

RESUMEN

The local activation overpotential describes the electrostatic potential shift away from equilibrium at an electrode/electrolyte interface. This electrostatic potential is not entirely satisfactory for describing the reaction kinetics of a mixed ionic-electronic conducting (MIEC) solid-oxide cell (SOC) electrode where charge transfer occurs at the electrode-gas interface. Using the theory of the electrostatic potential at the MIEC-gas interface as an electrochemical driving force, charge transfer at the ceria-gas interface has been modelled based on the intrinsic dipole potential of the adsorbate. This model gives a physically meaningful reason for the enhancement in electrochemical activity of a MIEC electrode as the steam and hydrogen pressure is increased in both fuel cell and electrolysis modes. This model was validated against operando XPS data from previous literature to accurately predict the outer work function shift of thin film Sm0.2Ce0.8O1.9 in a H2/H2O atmosphere as a function of overpotential.

11.
Chem Mater ; 33(6): 2139-2146, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33867664

RESUMEN

The potential of calcium-doped layered perovskite compounds, BaNd1-x Ca x InO4-x/2 (where x is the excess Ca content), as protonic conductors was experimentally investigated. The acceptor-doped ceramics exhibit improved total conductivities that were 1-2 orders of magnitude higher than those of the pristine material, BaNdInO4. The highest total conductivity of 2.6 × 10-3 S cm-1 was obtained in the BaNd0.8Ca0.2InO3.90 sample at a temperature of 750 °C in air. Electrochemical impedance spectroscopy measurements of the x = 0.1 and x = 0.2 substituted samples showed higher total conductivity under humid environments than those measured in a dry environment over a large temperature range (250-750 °C). At 500 °C, the total conductivity of the 20% substituted sample in humid air (∼3% H2O) was 1.3 × 10-4 S cm-1. The incorporation of water vapor decreased the activation energies of the bulk conductivity of the BaNd0.8Ca0.2InO3.90 sample from 0.755(2) to 0.678(2) eV in air. The saturated BaNd0.8Ca0.2InO3.90 sample contained 2.2 mol % protonic defects, which caused an expansion in the lattice according to the high-temperature X-ray diffraction data. Combining the studies of the impedance behavior with four-probe DC conductivity measurements obtained in humid air, which showed a decrease in the resistance of the x = 0.2 sample, we conclude that experimental evidence indicates that BaNd1-x Ca x InO4-x/2 is a fast proton conductor.

12.
Nat Commun ; 12(1): 556, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495469

RESUMEN

Oxide-ion conductors are important in various applications such as solid-oxide fuel cells. Although zirconia-based materials are widely utilized, there remains a strong motivation to discover electrolyte materials with higher conductivity that lowers the working temperature of fuel cells, reducing cost. Oxide-ion conductors with hexagonal perovskite related structures are rare. Herein, we report oxide-ion conductors based on a hexagonal perovskite-related oxide Ba7Nb4MoO20. Ba7Nb3.9Mo1.1O20.05 shows a wide stability range and predominantly oxide-ion conduction in an oxygen partial pressure range from 2 × 10-26 to 1 atm at 600 °C. Surprisingly, bulk conductivity of Ba7Nb3.9Mo1.1O20.05, 5.8 × 10-4 S cm-1, is remarkably high at 310 °C, and higher than Bi2O3- and zirconia-based materials. The high conductivity of Ba7Nb3.9Mo1.1O20.05 is attributable to the interstitial-O5 oxygen site, providing two-dimensional oxide-ion O1-O5 interstitialcy diffusion through lattice-O1 and interstitial-O5 sites in the oxygen-deficient layer, and low activation energy for oxide-ion conductivity. Present findings demonstrate the ability of hexagonal perovskite related oxides as superior oxide-ion conductors.

13.
ACS Appl Mater Interfaces ; 12(30): 34388-34401, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32627535

RESUMEN

Electrodes in solid-state energy devices are subjected to a variety of thermal treatments, from film processing to device operation at high temperatures. All these treatments influence the chemical activity and stability of the films, as the thermally induced chemical restructuring shapes the microstructure and the morphology. Here, we investigate the correlation between the oxygen reduction reaction (ORR) activity and thermal history in complex transition metal oxides, in particular, La0.6Sr0.4CoO3-δ (LSC64) thin films deposited by pulsed laser deposition. To this end, three ∼200 nm thick LSC64 films with different processing and thermal histories were studied. A variety of surface-sensitive elemental characterization techniques (i.e., low-energy ion scattering, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry) were employed to thoroughly investigate the cationic distribution from the outermost surface to the film/substrate interface. Moreover, electrochemical impedance spectroscopy was used to study the activity and the stability of the films. Our investigations revealed that, despite the initial comparable ORR activity at 600 °C, the degradation rates of the films differed by twofold in the long-term stability tests at 500 °C. Here, we emphasize the importance of processing and thermal history in the elemental surface distribution, especially for the stability of LSC64 electrodes and propose that they should be considered as among the main pillars in the design of active surfaces.

14.
Phys Chem Chem Phys ; 21(24): 13194-13206, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31173017

RESUMEN

For the mechanisms by which the oxygen gets incorporated in a dual-phase composite system, three hypotheses, i.e. cation inter-diffusion, spillover type and self-cleaning of the perovskite-structured phase, have been provided in the literature. However, experimentally a consensus on the most likely mechanism is yet to be reached. In this work, a specially fused sample of the lanthanum strontium chromium ferrite (LSCrF)-scandia/ceria-stabilised zirconia (ScCeSZ) dual-phase material was investigated. Among the three potential mechanisms, no obvious cation inter-diffusion was firstly observed. A cleaner surface of the ScCeSZ phase was confirmed in the fused sample than in the isolated ScCeSZ single-phase sample while impurity layers were clearly observed on the LSCrF surface, suggesting the cleaning effect from the perovskite. However, more evidence implies that the cleaning effect is not the only reason for the synergistic effects between these two phases. Observations via SIMS analysis lend strong support to the 'spillover-type' mechanism as the oxygen isotopic fraction on the surface of the ScCeSZ increased compared to the isolated single-phase and as the distance to the heterojunction increases, the oxygen isotopic fraction decreases. Moreover, oxygen depleted layers were clearly seen on the top layers of the LSCrF surface which may be associated with the higher oxygen diffusivity in the surface/sub-surface layers, oxygen grain boundary fast diffusion and the impurities on the perovskite phase. For this sample, a combination of 'spillover' and 'self-cleaning' type mechanisms is suggested to be the potential possibility while the contribution from the cation inter-diffusion for this specific sample is proven to be low.

15.
Dalton Trans ; 48(5): 1633-1646, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30534773

RESUMEN

The crystal structure of a (3 + 2)D incommensurate modulated LaNb0.88W0.12O4.06 phase, a novel oxygen ionic conductor, is refined using a combination of synchrotron X-ray diffraction and electron diffraction data. The superspace group I2/c(α10γ1)00(α20γ2)00 (a = 5.4131(1) Å, b = 11.6432(2) Å, c = 5.2963(1) Å, ß = 91.540(1)°, q1 = 0.2847(5)a* + 0.1098(9)c* and q2=-0.1266(9)a* + 0.2953(1)c*) was chosen for the refinement. Similar to other scheelite type modulated structures, the modulation of LaNb0.88W0.12O4.06 stems from the cation occupancy ordering in the xz plane. To facilitate the modulated cation sub-lattice, and to compensate for the difference in their size and charge, the B site polyhedra are distorted by stretching the B-O bond lengths. Consequently, an extension in the B site coordination number from 6 to 8 is observed in the modulated phase. An interconnected 3D network of BOx polyhedra, similar to that of modulated CeNbO4.25, is obtained as a result of the structure modulation, which is not available in the unmodulated parent structure. Tracer diffusivity measurements indicate that the composition is an oxygen ion conductor, which relies on an intersticalcy conduction mechanism. Oxygen tracer diffusivity of 2.46 × 10-9 cm2 s-1, at 750 °C is reported.

16.
Phys Chem Chem Phys ; 20(27): 18279-18290, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29957820

RESUMEN

Lanthanum strontium chromite ferrite ((La0.8Sr0.2)0.95CrxFe1-xO3-δ, LSCrF) pellets with 5% A-site deficiency were fabricated and the electrical conductivity and oxygen diffusion behaviour with different Cr substitution levels (x = 0.3, 0.5 and 0.7) were investigated. As the Cr content increased, the electrical conductivity increased and then a maximum value was achieved at x = 0.7. In the oxygen diffusion studies, all the measured materials present good surface exchange rates (>9 × 10-8 cm s-1 at 900 °C) while the bulk diffusivity of the investigated materials decreased as the Cr substitution level increased: at 900 °C the oxygen diffusion coefficients of the LSCrF materials (x = 0.3, 0.5 and 0.7) are 1.1 × 10-10 cm2 s-1, 3.7 × 10-12 cm2 s-1 and 8.6 × 10-13 cm2 s-1, respectively. Oxygen diffusion in the perovskite materials (LSCrF) is shown to be bulk diffusion limited and it was found that analysis on this type of material using the line scan mode in Time-of-Flight Secondary Ion Mass Spectrometry may result in significant underestimation of the surface exchange coefficient due to the oxygen saturation, while the depth profile mode provides more reliable results but the obtained surface exchange coefficients may also only reach a lower limit. Moreover, fast grain boundary diffusion behaviour was observed in the LSCrF (x = 0.7) material and the Le Claire, and Chung and Wuensch approximations were applied to analyse the oxygen diffusion profiles. For this material, the two approximations provided similar results for the grain boundary product (Dgbδ) and under the assumption that the width of a grain boundary is on the nanometre scale, the oxygen diffusion coefficient of the grain boundaries was about 3-4 orders of magnitude higher than that of the bulk at temperatures ≤900 °C.

17.
ACS Appl Mater Interfaces ; 9(35): 29633-29642, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28820933

RESUMEN

Acceptor-doped LaNbO4 is a promising electrolyte material for proton-conducting fuel cell (PCFC) applications. As charge transfer processes govern device performance, the outermost surface of acceptor-doped LaNbO4 will play an important role in determining the overall cell performance. However, the surface composition is poorly characterized, and the understanding of its impact on the proton exchange process is rudimentary. In this work, the surface chemistry of 1 atom % Sr-doped LaNbO4 (La0.99Sr0.01NbO4-d, denoted as LSNO) proton conductor is characterized using LEIS and SIMS. The implication of a surface layer on proton transport is studied using the isotopic exchange technique. It has shown that a Sr-enriched but La-deficient surface layer of about 6-7 nm thick forms after annealing the sample under static air at 1000 °C for 10 h. The onset of segregation is found to be between 600 and 800 °C, and an equilibrium surface layer forms after 10 h annealing. A phase separation mechanism, due to the low solubility of Sr in LaNbO4, has been proposed to explain the observed segregation behavior. The surface layer was concluded to impede the water incorporation process, leading to a reduced isotopic fraction after the D216O wet exchange process, highlighting the impact of surface chemistry on the proton exchange process.

18.
Phys Chem Chem Phys ; 19(22): 14319-14336, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28537623

RESUMEN

Enhanced conductivity in YSZ films has been of substantial interest over the last decade. In this paper we examine the effects of substrate lattice mismatch and film thickness on the strain in YSZ films and the resultant effect on the conductivity. 8 mol% YSZ films have been grown on MgO, Al2O3, LAO and NGO substrates, thereby controlling the lattice mismatch at the film/substrate interface. The thickness of the films was varied to probe the interfacial contribution to the transport properties, as measured by impedance spectroscopy and tracer diffusion. No enhancement in the transport properties of any of the films was found over single crystal values, and instead the effects of lattice strain were found to be minimal. The interfaces of all films were more resistive due to a heterogeneous distribution of grain boundaries, and no evidence for enhanced transport down dislocations was found.

19.
Sci Rep ; 7: 43721, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28252044

RESUMEN

The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10-10 Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10-6 Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures.

20.
ChemSusChem ; 9(16): 2182-92, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27478975

RESUMEN

Among standard high-temperature cathode materials for solid oxide fuel cells, La0.8 Sr0.2 MnO3-δ (LSM) displays the least reactivity with the oxide-ion conductor La2 Mo2 O9 (LMO), yet a reaction is observed at high processing temperatures, identified by using XRD and focused ion beam secondary-ion mass spectrometry (FIB-SIMS) after annealing at 1050 and 1150 °C. Additionally, Sr and Mn solutions were deposited and annealed on LMO pellets, as well as a Mo solution on a LSM pellet. From these studies several reaction products were identified by using XRD and located by using FIB-SIMS on the surface of pelletised samples. We used depth profiling to show that the reactivity extended up to ∼10 µm from the surface region. If Sr was present, a SrMoO4 -type scheelite phase was always observed as a reaction product, and if Mn was present, LaMnO3+δ single crystals were observed on the surface of the LMO pellets. Additional phases such as La2 MoO6 and La6 MoO12 were also detected depending on the configuration and annealing temperature. Reaction mechanisms and detailed reaction formulae are proposed to explain these observations. The strongest driving force for cationic diffusion appears to originate from Mo(6+) and Mn(3+) cations, rather than from Sr(2+) .


Asunto(s)
Suministros de Energía Eléctrica , Óxidos/química , Difusión , Electrodos , Electrólitos/química , Lantano/química , Manganeso/química , Molibdeno/química , Estroncio/química , Propiedades de Superficie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...